SVP j'ai un dm de maths mais j'y arrive pas, Pouvez vous m'aider c'est URGENT SVP.
Mathématiques
momie200
Question
SVP j'ai un dm de maths mais j'y arrive pas,
Pouvez vous m'aider c'est URGENT SVP.
Pouvez vous m'aider c'est URGENT SVP.
1 Réponse
-
1. Réponse Anonyme
Bonjour,
Partie A
1) [tex]\vec{AC}=\vec{AP}+\vec{PQ}+\vec{QC}\\\\\vec{AC}=\vec{PB}+\vec{PQ}+\vec{BQ}\\\\\vec{AC}=(\vec{PB}+\vec{BQ})+\vec{PQ}\\\\\vec{AC}=\vec{PQ}+\vec{PQ}\\\\\vec{AC}=2\vec{PQ}[/tex]
[tex]\vec{AC}=\vec{AS}+\vec{SR}+\vec{RC}\\\\\vec{AC}=\vec{SD}+\vec{SR}+\vec{DR}\\\\\vec{AC}=(\vec{SD}+\vec{DR})+\vec{SR}\\\\\vec{AC}=\vec{SR}+\vec{SR}\\\\\vec{AC}=2\vec{SR}[/tex]
2) Dans la partie 1, nous avons démontré que [tex]\vec{AC}=2\vec{PQ}=2\vec{SR}[/tex]
On en déduit que [tex]\vec{PQ}=\vec{SR}[/tex]
Par conséquent, PQSR est un parallélogramme.
D'où, la conclusion.
Partie B.
1) Construction.
2) [tex] \vec{AD}=\vec{AB}+\vec{BC}+\vec{CD}\\\\\vec{AD}=2\vec{AP}+2\vec{QC}+2\vec{CR}\\\\\vec{AD}=2\vec{AP}+2(\vec{QC}+\vec{CR})\\\\\vec{AD}=2\vec{AP}+2\vec{QR}\\\\\vec{AD}=2\vec{AP}+2\vec{PS}\\\\\vec{AD}=2(\vec{AP}+\vec{PS})\\\\\vec{AD}=2\vec{AS}[/tex]
Puisque [tex]\vec{AD}=2\vec{AS}[/tex], nous en déduisons que S est le milieu de [AD].
Par conséquent, A est le symétrique de D par rapport à S.
D'où, la conclusion.